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Abstract

In this paper, radiated sound from low Mach number turbulent boundary layers is studied using Lighthill’s analogy.

The focus is on investigating the behavior of wall pressure fluctuations on a flexible wall boundary. Comparisons are

made between the results from rigid and flexible walls. At low frequencies, the flexible wall results have shown much

higher levels of power spectra. At high frequencies, the spectra of the flexible wall sound radiation merge with those of

the rigid wall sound radiation. These trends are in agreement with other experimental and theoretical results in

literature. This theoretical study of the two-dimensional turbulent boundary layer clarifies the effects of a flexible wall

on radiated sound in low Mach number flows.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Early in 1950s, Lighthill (1952, 1954) established the Lighthill analogy stress tensors as the sound source of

turbulence. Curle (1955) investigated wall boundary effects using Lighthill’s analogy and concluded that pressure

fluctuations on the wall boundary generated radiative sound of dipole type. However, Powell (1964) stated that for

turbulent boundary layers over smooth rigid wall surfaces, the Lighthill stress tensors behaved as quadrupoles. Other

researchers have studied sound radiation from bursting and transitions in turbulent boundary layers (Landahl, 1975;

Lauchle, 1981). Since the geometrical size within which bursting and transition phenomena occur is much smaller than

the entire region of the turbulent boundary layer, their effective sound radiation may be neglected, according to

measured results. Recent interest in automobile and aircraft cabin noise excited by turbulent boundary layers has also

been explored (e.g., Maestrello, 1999; Wu et al., 1997).

There are two types of wall stresses that produce radiative noise sources, i.e., wall-pressure and shear-stress

fluctuations. For low Mach number flows, Howe (1979) found that wall shear stresses were unlikely to be the dominant

factor responsible for sound radiation. Therefore, fluctuation wall pressure has been identified as the dominant source

of radiated sound from turbulent boundary layers. However, power spectra of radiated sound pressure from two-

dimensional turbulent boundary layers over a rigid surface have been shown to be similar to that of the quadrupole

sound radiation (e.g., Blake, 1986). This result supports the argument that the radiated sound from the turbulent

boundary layer over a smooth, nonmoving, impervious rigid surface is quadrupole type. On the other hand, in a

turbulent boundary layer over a flexible wall, the small displacement of the wall, excited by the turbulent fluctuation

pressure, can possibly exacerbate the wall pressure fluctuation, and can thus generate net dipole-type sound radiation.

The following discussion is to theoretically quantify such effects and to compare with the results from rigid wall cases.

It needs be pointed out that the weak coupling assumption (Graham, 1997) is accepted in the current study. This

assumption corresponds to the assumption implicit in acoustic analogy analyses that the basic turbulence structure is
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essentially unaffected by the acoustic motions. The predictions that were obtained from the weak coupling

approximation have been shown to work well in a wide range of cases (Graham, 1997), except for the differences

between the theoretical results and measured data cited by Frendi (1997) in supersonic flow cases. For the current case

of M51; the adoption of the decoupled approach is well justified.

2. Fluctuation wall pressure on a flexible wall

Considering low Mach number ðM51Þ; zero-pressure gradient flow of an isentropic Stokes compressible fluid,

Lighthill (1952, 1954) showed that

1

c2o

@2p

@t2
�r2p ¼

@2Tij

@xi@xj

; ð1Þ

where

Tij ¼ rouiuj � eij ; eij ¼ mo

@ui

@xj

þ
@uj

@xi

�
2

3
dij

@uk

@xk

� �
;

ui; p are the fluctuation components of velocity and pressure, respectively. The ro; co and mo are the mean flow density,

sound speed and viscosity, respectively. These flow properties are assumed to be constant in this problem. In addition,

the mean flow velocity is assumed to be Vo ¼ Voðy2Þi and the convective effects in acoustic equations due to the mean

velocity are neglected. The coordinate system is shown in Fig. 1.

Define a Green’s function as
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where x and y are the coordinates in the radiation sound region and the source region, respectively. Using a conjunct

operationZ
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The second term on the right-hand side (r.h.s.) of Eq. (3) is the surface integration along the boundary wall. Using the

product theorem for Fourier transforms, it becomesZ
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where #f is the Fourier transform of f from ðy1; y2; tÞ to ðk1; y2;oÞ; defined as

#fðk1; y2;oÞ ¼
Z

N

�N

f ðy1; y2; tÞe�iðk1y1�otÞ dy1 dt: ð5Þ

Next, we try to express the surface fluctuation pressure and its derivative in Eq. (4) in terms of the surface displacement

and the flexible wall dynamic property.

On the wall surface, neglecting viscous effects in the fluctuation part of the y2-direction momentum, we have
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By assuming that v1 and v2 are small disturbances and therefore the higher order terms can be neglected, Eq. (6)

becomes
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; ð7Þ

i.e.,
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where x is the vertical displacement of the flexible wall surface. In addition, on the flexible surface, we have

#pwðk1;oÞ ¼ Zðk1;oÞ#xðk1;oÞ; ð9Þ

where Zðk1;oÞ is the wall impedance based on displacement. Substitution of Eqs. (8) and (9) into Eq. (4) yieldsZ
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If we let the Green’s function G on the wall surface satisfy
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the second term on the r.h.s. of Eq. (3) becomes zero. Hence,

pðx1; x2; tÞ ¼
Z

Tij
@2G

@yi@yj

dy1 dy2 dt: ð12Þ

Eq. (12) shows that the fluctuation pressure is determined by the Lighthill stress Tij and the Green’s G: The effects of
a flexible wall are represented by the expression of G: It should be noted that because of the weak coupling assumption

as stated previously, the Lighthill stress, Tij ; behaves the same as on a rigid wall.

On the wall boundary, let x2 ¼ 0 in Eq. (12), and we have

pwðx1; tÞ ¼ pðx1; 0; tÞ ¼
Z

Tij
@2Gx2¼0

@yi@yj

dy1 dy2 dt: ð13Þ

Green’s function that satisfies the boundary condition expressed in Eq. (11) can be obtained by using Dowling’s (1983)

results, with the special case of g0 ¼ g1 ¼ g; U1 ¼ 0 and h ¼ 0 in her results. Note that in Dowling’s case, the conditions

are for inward waves, while in this case the sound waves are outward waves. The expression of Green’s function is then

Gx2¼0 ¼
1

ð2pÞ2

Z
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where

F ðk1;oÞ ¼
Zð�k1;�oÞ

roo2 þ igZð�k1;�oÞ
;

g ¼ k1ðy1 � x1Þ � oðt� tÞ � gy2;
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For radiated sound, only jk1joo=co is nondecaying; therefore g is a positive real number (when o > 0). Substitute

Eq. (14) into Eq. (13) and switch the order of the multi-integrations to get

pwðx1; tÞ ¼
1
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By replacing �k1 and �o with k1 and o; respectively, it can be deduced from Eq. (15) that
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It can be seen that the difference between a rigid wall and a flexible wall is reflected in F : On a rigid wall, Z-N; we
have

F ð�k1;�oÞ ¼ �
1

ig
; ð17Þ

and Eq. (16) becomes

#pwrigidðk1;oÞ ¼ �
i

g

Z
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This expression is the same as the result in Howe (1979), although the boundary conditions for the Green’s function in

that paper were for the rigid wall surface only. On a flexible wall,

F ð�k1;�oÞ ¼
Zðk1;oÞ

roo2 � igZðk1;oÞ
; ð19Þ

where the displacement impedance for a flexible wall, Zðk1;oÞ; is yet to be determined.

For a two-dimensional plate, the equation for bending vibration is (Ffowcs-Williams, 1965)

m
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þ B
@4x
@x4

¼ �ðpw � paÞ; ð20Þ

where m is the mass per unit area of the plate, pa is the acoustic pressure fluctuation due to plate motion, and B is the

bending stiffness. Both m and B are the material properties of the plate. The pressure force, pw � pa; is called ‘‘blocked’’

boundary pressure by Graham (1997). In the transformed domain, Eq. (20) becomes

�mo2 #xþ Bk4
1
#x ¼ �ð #pw � #paÞ: ð21Þ

The induced acoustic pressure fluctuation can be expressed as (e.g., Ross, 1976; Howe, 1998)
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Hence, from Eq. (21),
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Substitute this expression into Eq. (19) to get
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For rigid walls, B-N; and Eq. (24) reduces to Eq. (17).

If we compare the fluctuation wall pressure on flexible and rigid walls, we have
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There are singularities at the sonic wavenumber jk1j ¼ o=co and at jk1j ¼ ðmo2=BÞ1=4: These singularities may not exist

if viscous effects are present. What is important is that Eq. (25) shows

#pwflex

#pwrigid










 > 1
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for any frequency and wavenumber. That means the magnitude of wall fluctuation pressure on a flexible wall is always

greater than that on a rigid wall. This will cause higher radiated noise from a flexible wall, as shown in the next section.

The excessive amount of pressure fluctuation on a flexible wall is determined by the imaginary part in Eq. (25). For

small k1; this part approximately becomes

b ¼
roco

mo
;

where b is called the fluid loading factor in Blake (1986). It can be seen that: (a) the excessive amount of fluctuation

pressure is proportional to the characteristic acoustic impedance, roco; of the fluid; (b) at lower frequencies the

secondary sound radiation due to flow-excited surface vibration on a flexible wall is more significant, the fact

compatible with results shown in Blake (1986). The characteristic impedances for air and water are approximately 415

and 1:48
 106 mksRayls; respectively. If we consider a steel plate with thickness of 1 cm and rplate ¼ 8
 103 kg=m3;
we have

roco

rplateho
¼

5:19

oð1=sÞ

in air, and

roco

rplateho
¼

1:85
 104

oð1=sÞ

in water. Therefore, in the range of radiated sound frequency of 10 Hz–100 kHz; the secondary sound radiation in air-

flow is not significant. That is why in most of the air-flow/structure coupling problems, the secondary sound radiation

can be neglected, unless in low frequency ranges. However, in hydrodynamic problems, which Blake (1986) called heavy

fluid problems, the secondary radiation is dominant, the fact that is shown quantitatively in the following section. This

secondary radiation was called flow-excited noise by Vecchio and Wiley (1973), in contrast to flow-induced noise which

is due to the direct radiation from the wall turbulence.

3. Sound radiation from a flexible wall

If the convection effects from the turbulent boundary layer can be neglected, the radiated sound pressure can be

related with the surface pressure as shown by Tam (1975):

#pðk1; x2;oÞ ¼ #pwðk1;oÞeigx2 : ð26Þ

Therefore,
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The power spectrum of radiated sound is defined as

PðoÞ ¼
Z

/pðx1; x2; tÞpðx1; x2; t þ tÞSeiot dt; ð28Þ

where ‘‘/S’’ denotes ensemble averages. From Eq. (26) and assuming pw to be a stationary random function, Tam

(1975) showed that
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in which x ¼ y01 � y001 and Z ¼ t0 � t00: By substituting Eq. (27) into Eq. (28), it can be proved that

PðoÞ ¼
1

ð2pÞ4

Z
jk1 joo=co

#Rrigidðk1;oÞg2F ð�k1;�oÞF ðk1;oÞ dk1: ð32Þ

Comparing the above expression with Eq. (29), we have

#Rðk1;oÞ ¼ #Rrigidðk1;oÞg2F ð�k1;�oÞF ðk1;oÞ: ð33Þ

Therefore, substituting Eq. (24) into the above expression, we have

#Rðk1;oÞ ¼ #Rrigidðk1;oÞ þ
r2o4

g2ðmo2 � Bk4
1Þ

2
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Eqs. (32) and (34) yield

PðoÞ ¼ PrigidðoÞ þ
1

ð2pÞ4
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2
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Eq. (35) shows that there is an excessive amount of the radiated sound spectrum of a flexible wall over that of a

rigid wall.

In order to quantitatively estimate the r.h.s. of Eq. (35), #Rrigid has to be known. The wall pressure cross-correlations

beneath turbulent boundary layers have been studied during the last 40 years or so (e.g., Bull, 1996). In this paper, an

experimental result by Maestrello (1967) for a rigid wall surface has been selected to derive analytical expressions for the

power spectra. Maestrello’s three-Gaussian-correlation model can lead to analytical expressions of power spectra as

shown later in this paper and also in Tam’s (1975). It is important that the behavior and comparison of the solutions be

analyzed based on the closed-form solutions in this case, in order to recognize and exclude singularity effects in the

solutions to be discussed later. There was a substantial amount of experimental data in Maestrello’s paper (1967) to

support the model, and the model could be applied to relatively high subsonic Mach numbers. Although strictly

speaking the results presented in this paper is applicable to M51; they could be stretched to a higher Mach number

range as long as the convective effects in acoustic equations could be neglected.

Assuming uniformity in the span-wise direction in this case, Maestrello’s correlation can be expressed as

Rðx; ZÞ ¼ %t2w exp �
jxj

Ucy

� � X3
i¼1

Aiai

a2i þ ð 1
FU

Þ2ðx� UcZÞ
2

( ) X3
i¼1

Ai

ai

,
; ð36Þ

where %tw is the mean flow wall shear stress, Ai and ai are the constants defined in Maestrello (1967), U is the freestream

velocity, Uc is the convective velocity of eddies in the turbulent boundary layer and is chosen as 0:8U ; F ¼ d�=U ;
Ucy=d� ¼ 17:0; in which d� is the displacement thickness of the turbulent boundary layer. Hence, after the Fourier

transform we can have

#Rrigidðk1;oÞ ¼
2p%t2w

ðU2
c y=HUÞ
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i¼1ðAi=aiÞ

1
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c y
2
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Ai exp �ai
HUo
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� �
: ð37Þ

Substitution of Eq. (37) into Eq. (35) gives, in a dimensionless format,

LP ¼
PðoÞð2pÞ3

H %t2w
¼

PrigidðoÞð2pÞ
3

H %t2w

þ
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2ðd�=hÞ2

Ucy=d
�
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i¼1Ai expð�aiQU=UcÞ

QM



Z 1

�1

1

ð1� y2Þ½1� Q2M2y4ðh=d�Þ2E=12ð1� s2Þrplatec2o�
2



dy

Q2ðU=Uc � MyÞ2 þ ðUcy=d
�Þ�2

; ð38Þ

where y ¼ k1co=o; Q ¼ d�o=U ; M ¼ U=co; and m and B have been replaced by rplateh and Eh3=½12ð1� s2Þ�; where E is

the elasticity of the plate and s is the plate Poisson ratio (Timoshenko and Woinowsky-Krieger, 1959). The rigid power

ARTICLE IN PRESS
Z.C. Zheng / Journal of Fluids and Structures 18 (2003) 93–10198



spectrum can be obtained as

LPrigid ¼
PrigidðoÞð2pÞ

3

H %t2w

¼
1

ðUc=UÞ
P3

i¼1Aiai

tan�1 2QðUcy=d
�ÞM

1þ Q2ðUcy=d
�Þ2ðU2=U2

c � M2Þ

" #X3
i¼1

Ai exp �aiQ
U

Uc

� �
: ð39Þ

Fig. 2 is a sample calculation for comparison of the logarithmic LP at M ¼ 0:1 on rigid and flexible walls, with Q

ranging from 10�4 to 10, using the values for the constants given in Maestrello (1967). The physical properties are based

on a steel plate as the wall and water as the fluid, with E ¼ 2
 1011 N=m2; rplate ¼ 8
 103 kg=m3; s ¼ 0:3; h ¼ 10�2 m;
h=d� ¼ 1:0; ro ¼ 1:0
 103 kg=m3 and co ¼ 1:48
 103 m=s: The integration range in Eq. (38) is from �0:9 to 0.9, to
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Fig. 2. Comparison of radiated sound spectra of the flexible and rigid walls. The solid curve is for flexible walls and the dashed curve is

for rigid walls.
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Fig. 3. Effects of integration ranges on radiated sound spectra of the flexible walls, with different integration ranges: the solid curve is

with the range from �0:5 to 0.5; the dashed curve is with the range from �0:9 to 0.9.
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avoid singularities at the sonic wave number. The bending wave number singularity at jk1j ¼ ðmo2=BÞ1=4 does not occur
with the current physical property values for low Mach number flow. The integration uses the Romberg integration

algorithm in Press et al. (1986). It can be seen that at low frequencies, the flexible wall has much higher radiated sound

than the rigid wall. At high frequencies, the two spectra merge together. Such phenomena can also be discerned from

the expression on the r.h.s. of Eq. (38), since the difference (the second term on the r.h.s. of Eq. (38)) between the

flexible and rigid wall is proportional to 1=Q at small Q values. These trends agree with several results for panel

radiation from turbulent flow-excited wall vibration presented in Blake (1986).

In order to clarify the concern that the excessive radiation might be due to the singularity at sonic wavenumber in the

integration, a substantially smaller integration range for y from �0:5 to 0.5 has been tested for the calculation. Fig. 3 is

the comparison of the flexible wall spectra using the smaller and larger ranges of wavenumber integrations for

calculation. It can be seen that only a slight difference is shown. That means that the excessive amount of sound

radiation from a flexible wall is not caused by the singularity at the sonic wavenumber. Bergeron (1974) analyzed this

singularity in greater detail and showed that this nonintegrable singularity arose because the two-dimensional turbulent

source region was considered to be infinite extent, and the sound field from each source element did not decrease rapidly

enough with distance for the integrated effect to be finite. He demonstrated that when the source region had finite extent

there was still a singularity for spectral elements with sonic phase speeds but the singularity was integrable. Howe (1979)

found that when viscosity was included the pressure spectrum remained finite.

4. Conclusion

Flexible wall effects have been represented by a Green’s function which satisfies the specified boundary condition

related with the flexible wall impedance. The wall pressure fluctuation can thus be compared with different flexible wall

properties. The study has shown that the excessive wall pressure fluctuation on a flexible wall is related with the fluid

loading factor, which is determined by the characteristic impedance of the fluid. A mathematical model of the rigid wall

cross-correlation function of fluctuation wall pressure is then modified to include flexible wall effects. These

relationships have been employed to calculate the power spectra of the radiated sound field from flexible walls.

Comparisons between the power spectra of flexible and rigid wall radiation have shown that, at low frequencies, the

flexible wall has much higher levels of spectra. At high frequencies, the spectra of the flexible wall merge with those of

the rigid wall. These trends are in agreement with other experimental and theoretical results in literature. The effects of

singularity at the sonic wavenumber have been discussed and their influence on the excessive amount of radiation from

a flexible wall is excluded.
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